References


[Ba88]
L. Bader. Some new examples of flocks of Q+(3,q). Geom. Ded., 27:213-218, 1988.

[Ba88a]
L. Bader. On the flocks of the quadratic cone. Boll. Un. Mat. Ital. A(7), 2:371-375, 1988.

[Ba90]
L. Bader. Derivation of Fisher flocks. J. Geom., 37:17-24, 1990.

[BdR?]
L. Bader and M.J. de Resmini. On some Kantor flocks. Discrete Math., to appear.

[BGP?]
L. Bader, D. Ghinelli and T. Penttial. On monomial flocks. preprint 2000.

[BL89]
L. Bader and G. Lunardon. On the flocks of Q+(3,q). Geom. Ded., 29:177-183, 1989.

[BL94]
L. Bader and G. Lunardon. On non-hyperelliptic flocks. Europ. J. Combinatorics, 15:411-415, 1994.

[BLPa94]
L. Bader, G. Lunardon, and Payne S.E. On q-clan geometry, q = 2e. Bull. Belgian Math. Soc., Simon Stevin, 1:301-328, 1994.

[BLPi99]
L. Bader, G. Lunardon, and I. Pinneri. A New Semifield Flock. J.C.T. (A), 86: 49-62, 1999.

[BLT90]
L. Bader, G. Lunardon, and J.A. Thas. Derivation of flocks of quadratic cones. Forum Math., 2:163-174, 1990.

[Be73]
D. Betten. 4-dimensionale Translationebenen mit 8-dimensionale Kollineationsgruppe. Geom. Dedicata, 2: 327-339, 1973.

[BJo9?]
M. Biliotti and N.L. Johnson. Bilinear flocks of quadratic cones. J. Geometry. to appear.

[BBBSS99]
A. Blokhuis, S. Ball, A.E. Brouwer, L. Storme and T. Szönyi. On the number of slopes of the graph of a function defined on a finite field. J.C.T. (A), 86: 187-196, 1999.

[Br88]
J.M.N. Brown. Partitioning the complement of a simplex in PG(e,qd+1) into copies of PG(d,q). J. Geom., 33: 11-16, 1988.

[Bu69]
F. Buekenhout. Une caractérisation des espaces affines basée sur la notion de droite. Math. Z. 111: 367-371, 1969.

[BT75]
A. Bruen and J.A. Thas. Flocks, chains, and configurations in finite geometries. Rend. Acc. Naz. Lincei, 59(6):744-748, 1975.

[Ch88]
W. Cherowitzo. Hyperovals in Desarguesian Planes of Even Order. Ann. Disc. Math., 37:87-94, 1988.

[Ch96]
W. Cherowitzo. Hyperovals in Desarguesian planes: An update. Discrete Math., 155:31-38, 1996.

[Ch98]
W. Cherowitzo. Monomial Flocks of Monomial Cones in Even Characteristic. J. Belg. Math. Soc. - Simon Stevin, 5: 241-253, 1998.

[Ch98a]
W. Cherowitzo. alpha-Flocks and Hyperovals. Geom. Dedicata, 72: 221-246, 1998.

[CS98]
W. Cherowitzo and L. Storme. alpha-Flocks with oval herd and monomial hyperovals. Journal of Finite Fields and their Applications, 4:185-199, 1998.

[CPPR96]
W. Cherowitzo, T. Penttila, I Pinneri, and G. Royle.   Flocks and Ovals.   Geom. Dedicata, 60:17-37, 1996.

[COP?]
W. Cherowitzo, C. M. O'Keefe and T. Penttila. A unified construction of finite geometries in characteristic two. preprint, 2000.

[DCH93]
F. DeClerck and C. Herssens. Flocks of the quadratic cone in PG(3,q), for q small. Reports of the CAGe project, 8:1-75, 1993.

[DCvM94]
F. DeClerck and H. Van Maldeghem. Flocks of an infinite quadratic cone. Bulletin Belg. Math. Soc/Simon Stevin, 399-415, 1994.

[DCGT88]
F. DeClerck, H. Gevaert, and J.A. Thas. Flocks of a quadratic cone in PG(3,q), q8. Geom. Ded., 26:215-230, 1988.

[De67]
P. Dembowski. Finite Geometries. Springer-Verlag, Berlin, Heidelberg, New York, 1967.

[Di01]
L.E. Dickson. Linear Groups with an Exposition of the Galois Field Theory. Teubner, Leipzig, 1901; Dover, New York, 1958.

[FT79]
J.C. Fisher and J.A. Thas. Flocks in PG(3,q). Math. Z., 169:1-11, 1979.

[GJ88]
H. Gevaert and N.L. Johnson. Flocks of quadratic cones, generalized quadrangles and translation planes. Geom. Ded., 27:301-317, 1988.

[Gl83]
D. Glynn. Two new sequences of ovals in finite Desarguesian planes of even order. Combinatorial Mathematics X, 217-229, 1983. Lecture Notes #1036.

[Gl89]
D. Glynn. A Condition for the existence of ovals in PG(2,q), q even. Geom. Dedicata, 32:247-252, 1989.

[Gl9?]
D. Glynn. Cubic Curves in Characteristic 2. Preprint.

[Ha75]
M. Hall. Ovals in the Desarguesian plane of order 16. Ann. Mat. Pure App., 102:156-176, 1975.

[HJ95]
Y. Hiramine and N.L. Johnson. Regular partial conical flocks. Bull. Belg. Math. Soc., 2:419-433, 1995.

[Hi79]
J.W.P. Hirschfeld. Projective Geometries over Finite Fields. Clarendon Press, Oxford, 1979.

[JJ96a]
V. Jha and N.L. Johnson. Automorphism groups of oval cones. Geom. Ded., 61:71-85, 1996.

[JJ96b]
V. Jha and N.L. Johnson. Rigidity in Conical flocks. J. Comb. Theory (A), 73:60-76, 1996.

[JJ9?a]
V. Jha and N.L. Johnson. The doubly transitive flocks of quadratic cones. Europ. J. Comb. to appear.

[JJ9?b]
V. Jha and N.L. Johnson. Flocks of oval cones and extensions of theorems of Thas. Note di Mat. to appear.

[JJ96c]
V. Jha and N.L. Johnson. Infinite flocks of a quadratic cone. J. Geom., 57: 123-150, 1996.

[JJ96d]
V. Jha and N.L. Johnson. Rigidity in conical flocks. J.C.T. (A), 73: 60-76, 1996.

[Jo87]
N.L. Johnson. Semifield flocks of quadratic cones. Simon Stevin, 61(3-4):313-326, 1987.

[Jo89a]
N.L. Johnson. Translation planes admitting Baer groups and partial flocks of quadric sets. Simon Stevin, 63(3):163-187, 1989.

[Jo89b]
N.L. Johnson. The derivation of dual translation planes. J. Geom., 36: 63-90, 1989

[Jo90]
N.L. Johnson. Flocks and partial flocks of quadric sets. Contemp. Math., 111:71-80, 1990.

[Jo91]
N.L. Johnson. Conical flocks whose corresponding translation planes are derivable. Simon Stevin, 65, 3/4:199-215, 1991.

[Jo92]
N.L. Johnson. Derivation of partial flocks of quadratic cones. Rend. Mat., 12:817-848, 1992.

[Jo96]
N.L. Johnson. Extending partial flocks containing linear subflocks. J. Geom., 55:99-106, 1996.

[JL97a]
N.L. Johnson and X. Liu. Flocks of quadratic and semi-elliptic cones. In Mostly Finite Geometries, ed. N.L. Johnson, Marcel Dekker, 275-304, 1997.

[JL97b]
N.L. Johnson and X. Liu. The Generalized Kantor-Knuth Flocks. In Mostly Finite Geometries, ed. N.L. Johnson, Marcel Dekker, 305-314, 1997.

[JLu97]
N.L. Johnson and G. Lunardon. Maximal partial spreads and flocks. Designs, Codes and Cryptography, 10:193-202, 1997.

[JLW91]
N.L. Johnson, G. Lunardon, and F.W. Wilke. Semifield skeletons of conical flocks. J. Geom., 40:105-112, 1991.

[JP97]
N.L. Johnson and S.E.   Payne. Flocks of Laguerre Planes and Associated Geometries. In Mostly Finite Geometries, ed. N.L. Johnson, Marcel Dekker, 51-122, 1997.

[JS97]
N.L. Johnson and L. Storme. Spreads corresponding to flocks of quadrics. In Mostly Finite Geometries, ed. N.L. Johnson, Marcel Dekker, 315-323, 1997.

[Ka80]
W.M. Kantor. Generalized quadrangles associated with G2(q). J.C.T. (A), 29:212-219, 1980.

[Ka86]
W.M. Kantor. Some generalized quadrangles with parameters (q2, q). Math. Zeit., 192:45-50, 1986.

[Ka91]
W.M. Kantor. Generalized quadrangles, flocks and BLT-sets. J. Comb. Theory (A), 58:153-157, 1991.

[Ko78]
G. Korchmáros. Guppi di collinazioni transitivi sui punti di una ovale [(q+2)-arco] di S2,q, q pari. Atti Sem. Mat. Fis. Univ. Modena, 27:89-105, 1978.

[LP??a]
M. Law and T. Penttila. Some flocks in characteristic 3. preprint, 2000.

[LP??b]
M. Law and T. Penttila. BLT-sets over small fields II. preprint, 2000.

[Lu91]
G. Lunardon. A remark on the derivation of flocks. In J.W.P. et al. Hirshfeld, editor, Advances in Finite Geometries and Designs, 299-309. Oxford University Press, 1991.

[Lu97]
G. Lunardon. Flocks, ovoids of Q(4,q) and designs. Geom. Dedicata, 66:163-173, 1997.

[Lu??]
G. Lunardon. An Approach to Semifield Flocks. Preprint.

[LS58]
L. Lunelli and M. Sce. K-archi completi nei piani proletivi desarguesiani di rango 8 e 16. Centro calcoli numerici, Politecnico di Milano, 1958.

[Ma67]
G.E. Martin. On arcs in a Finite Projective Plane. Can. J. Math, 19:373-393, 1967.

[OKP89]
C.M. O'Keefe and T. Penttila. Polynomials Representing Hyperovals. Research Report 26, Department of Mathematics, University of Western Australia, June 1989.

[OKP91a]
C.M. O'Keefe and T. Penttila. Hyperovals in PG(2,16). European J. Combin., 12:51-59, 1991.

[OKP91b]
C.M. O'Keefe and T. Penttila. Polynomials for Hyperovals of Desarguesian Planes. J. Austal. Math. Soc. (Series A), 51:436-447, 1991.

[OKP9?a]
C.M. O'Keefe and T. Penttila. Characterisations of flock quadrangles. submitted.

[OKP9?b]
C.M. O'Keefe and T. Penttila. Automorphism groups of generalized quadrangles via an unusual action of P\GammaL(2,2h). submitted.

[OKT96]
C.M. O'Keefe and J.A. Thas. Collineations of Subiaco and Cherowitzo hyperovals. Bull. Belg. Math. Soc., 3:179-193, 1996.

[OKT97]
C.M O'Keefe and J.A. Thas. Partial flocks of quadratic cones with a point vertex in PG(n,q) n, odd. J. Alg. Combin., 6:377-392, 1997.

[Or73]
W. F. Orr. The Miquelian inversive plane IP(q) and the associated projective planes. 1973. Thesis submitted to obtain the degree of Doctor of Philosophy at the University of Wisconsin.

[Pa85]
S.E. Payne. A new infinite family of generalized quadrangles. Congressus Numerantium, 49:115-128, 1985.

[Pa89]
S.E. Payne. An Essay on Skew Translation Generalized Quadrangles. Geom. Dedicata, 32:93-118, 1989.

[Pa92]
S.E. Payne. Collineations of the generalized quadrangles associated with q-clans. Ann. Disc. Math., 52:449-461, 1992.

[Pa95]
S.E. Payne. A tensor product action on q-clan generalized quadrangles with q=2e . Lin. Alg. and its Appl., 226-228:115-137, 1995.

[Pa96a]
S.E. Payne. The Fundamental Theorem of q-Clan Geometry. Designs, Codes and Cryptography, 8:181-202, 1996.

[Pa98]
S.E. Payne. The Subiaco notebook: An Introduction to q-clan geometry. Preprint, 1998.

[Pa??]
S.E. Payne. The Law-Penttila q-clan geometries. preprint, 2000.

[PC78]
S.E. Payne and J. Conklin. An Unusual Generalized Quadrangle of Order Sixteen. JCT (A), 24:50-74, 1978.

[PPP95]
S.E. Payne, T. Penttila, and I. Pinneri. Isomorphisms between Subiaco q-clan geometries. Bull. Belgian Math. Soc., 2:197-222, 1995.

[PPR97]
S.E. Payne, T. Penttila, and G. Royle. Building a Cyclic q-clan. In Mostly Finite Geometries, ed. N.L. Johnson, Marcel Dekker, 365-378, 1997.

[PR90]
S.E. Payne and L.A. Rogers. Local group actions on generalized quadrangles. Simon Stevin, 64:249-284, 1990.

[PT91a]
S.E. Payne and J.A. Thas. Conical flocks, partial flocks, derivation and generalized quadrangles. Geom. Dedicata, 38:229-243, 1991.

[PT91b]
S.E. Payne and J.A. Thas. Generalized quadrangles, BLT-sets, and Fisher flocks. Congressus Numerantium, 84:161-192, 1991.

[Pe98]
T. Penttila. Regular cyclic BLT-sets. Rend. Circ. Mat. Palermo Serie II, Suppl. 53: 167-172, 1998.

[POK9?]
T. Penttila and C.M. O'Keefe. Groups of flock quadrangles. preprint

[PR98]
T. Penttila, and G. Royle. BLT-sets over small fields. Australasian Journal of Combinatorics, 17:295-307, 1998.

[PS98]
T. Penttila and L. Storme. Monomial flocks and ovals. J.C.T. (A), 83:21-41, 1998.

[ST95]
L. Storme and J.A. Thas. k-Arcs and partial flocks. Linear Algebra Appl., 1995. 226-228 or 33-45.

[Th72]
J.A. Thas. Flocks of finite egglike inversive planes. C.I.M.E., II ciclo, Bressanone, 189-191, 1972.

[Th75]
J.A. Thas. Flocks of non-singular ruled quadrics in PG(3,q). Accad. Naz. Lincei, 59:83-85, 1975.

[Th87]
J.A. Thas. Generalized Quadrangles and Flocks of Cones. Europ. J. Combin., 8:441-452, 1987.

[Th93a]
J.A. Thas. A characterization of the Fisher-Thas-Walker flocks. Simon Stevin, 76:219-226, 1993.

[Th93b]
J.A. Thas. Lectures on Geometry. Unpublished Seminar Notes. 1993.

[THDC93]
J.A. Thas, C. Herssens, and F. DeClerk. Flocks and partial flocks of the quadratic cone in PG(3,q). Finite Geometry and Combinatorics, 379-393, 1993. London Math. Soc. Lecture Note Series 191.

[Wa76]
M. Walker. A class of translation planes. Geom. Ded. 5:135-146, 1976.