Stan Payne

University of Colorado at Denver, United States


Department of Mathematics
University of Colorado at Denver
Campus Box 170
P.O. Box 173364
Denver, CO 80217-3364

Phone: (303) 556-8443
Fax: (303) 556-8550
Email:
spayne@carbon.cudenver.edu



Flock Related References

  1. S.E. Payne, T. Penttila, and G. Royle. Building a Cyclic q-clan. In Mostly Finite Geometries. Proceedings of a conference in honor of T.G. Ostrom, Marcel Dekker, 1997.

  2. N.L. Johnson and S.E.   Payne. Flocks of Laguerre Planes and Associated Geometries. In Mostly Finite Geometries. Marcel Dekker:51-122, 1997.

  3. S.E. Payne. The Fundamental Theorem of q-Clan Geometry. Designs, Codes and Cryptography, 8:181-202, 1996.

  4. S.E. Payne. A tensor product action on q-clan generalized quadrangles with q=2^e. Lin. Alg. and its Appl., 226-228:115-137, 1995.

  5. S.E. Payne, T. Penttila, and I. Pinneri. Isomorphisms between Subiaco q-clan geometries. Bull. Belgian Math. Soc., 2:197-222, 1995.

  6. L. Bader, G. Lunardon, and Payne S.E. On q-clan geometry, tex2html_wrap_inl
ine216 . Bull. Belgian Math. Soc., Simon Stevin, 1:301-328, 1994.

  7. S.E. Payne. Collineations of the generalized quadrangles associated with q-clans. Ann. Disc. Math., 52:449-461, 1992.

  8. S.E. Payne and J.A. Thas. Conical flocks, partial flocks, derivation and generalized quadrangles. Geom. Dedicata, 38:22-243, 1991.

  9. S.E. Payne and L.A. Rogers. Local group actions on generalized quadrangles. Simon Stevin, 64:249-284, 1990.

  10. S.E. Payne. An Essay on Skew Translation Generalized Quadrangles. Geom. Dedicata, 32:93-118, 1989.

  11. Payne S.E. and J. Conklin. An Unusual Generalized Quadrangle of Order Sixteen. JCT (A), 24:50-74, 1978.