Quadratic Sets

4.1 Fundamental Definitions
4.2 The Index of a Quadratic Set
Tangents

Def: Let \(Q \) be a set of points of the projective space \(\mathbf{P} \). A line \(g \) is a *tangent* of \(Q \) if either \(g \) has just one point in common with \(Q \) or each point of \(g \) is contained in \(Q \).

For each point \(P \) of \(Q \) let the set \(Q_p \) consist of the point \(P \) and all the points \(X \neq P \) such that the line \(XP \) is a tangent of \(Q \). One calls \(Q_p \) the *tangent space* of \(Q \) at \(P \).
Quadratic Sets

We call the set Q a *quadratic set* of \mathbf{P} if it satisfies:

1. **If-three-then-all axiom.** Any line g that contains at least three points of Q is totally contained in Q. In other words, any line not contained in Q can meet Q in at most 2 points.

2. **Tangent-space axiom.** For any point P of Q, its tangent space Q_P is either a hyperplane or all of \mathbf{P}.
Examples of Quadratic Sets

1. The empty set and any subspace of P is a quadratic set.
2. The union of two planes is a quadratic set.
3. In 3-space, hyperbolic quadrics and cones over a quadratic set are quadratic sets.
Examples of Quadratic Sets

4. In Euclidean geometry, spheres in 3 dimensions and conics in the plane are quadratic sets.
Lemma 4.1.1: Let Q be a quadratic set of P, and let U be a subspace of P. Then the set $Q' := Q \cap U$ of the points of Q in U is a quadratic set of U. Moreover, we have

$$Q'_P = Q_P \cap U$$

for all points $P \in Q'$.

Pf: Clearly Q' satisfies the if 3 then all axiom. Let $P \in Q'$. We have

$$Q'_P = \{P\} \cup \{X | XP \text{ is a tangent, } X \in U\} = Q_P \cap U.$$

Since Q_P is a subspace of P of dimension at least $d-1$, $Q_P \cap U$ is a subspace of U of dimension at least $\dim(U) - 1$.

\[\square\]
The Radical

Def: Let Q be a quadratic set of \mathbb{P}. The *radical* of Q is the set $\text{rad}(Q)$ of all points P in Q with the property that $Q_P = P$.

We say that Q is *nondegenerate* if $\text{rad}(Q) = \emptyset$, that is, if for each point P of Q, Q_P is a hyperplane.

Example:
A sphere in Euclidean space is a nondegenerate quadratic set, while a cone is degenerate since its radical consists of the vertex of the cone.
Theorem 4.1.2: Let Q be a quadratic set of \mathbb{P}.

a. The radical of Q is a (linear) subspace of \mathbb{P}.

b. Let U be a complement of rad(Q) (that is, a subspace U such that $U \cap \text{rad}(Q) = \emptyset$ and $<U, \text{rad}(Q)> = \mathbb{P}$). Then $Q' := Q \cap U$ is a nondegenerate quadratic set of U.

c. Q can be described as follows: Q consists of all points that lie on lines that join a point of rad(Q) with a point of $Q' = Q \cap U$.
Theorem 4.1.2: Let Q be a quadratic set of \mathbb{P}. a) The radical of Q is a (linear) subspace of \mathbb{P}.

Proof (a) Let P, P' in $\text{rad}(Q)$. Let P'' be a third point on PP'. We have to show that P'' also lies in $\text{rad}(Q)$, that is, $Q_{p''}$ contains all the points of \mathbb{P}.

Since every line through a point of the radical is a tangent line, PP' is a tangent line containing at least two points of Q. Thus, all the points of PP' are in Q. Now assume that $Q_{p''}$ is only a hyperplane (which must contain the line PP'). Consider a line g through P'' which is not contained in $Q_{p''}$. The line g is not a tangent line, so it must contain precisely one other point R in Q. The lines PR and $P'R$ are tangent lines with more than one point of Q, so they are entirely contained in Q. Let T be a point of PR different from P and R.

$P'T$ is a tangent with 2 points in Q, so is contained in Q. Thus, the point $T' = g \cap P'T$ is in Q, and since T' can not be R or P'', we obtain a contradiction.
Theorem 4.1.2: Let Q be a quadratic set of P.

a. The radical of Q is a (linear) subspace of P.

b. Let U be a complement of $\text{rad}(Q)$ (that is, a subspace U such that $U \cap \text{rad}(Q) = \emptyset$ and $<U, \text{rad}(Q)> = P$). Then $Q' := Q \cap U$ is a nondegenerate quadratic set of U.

c. Q can be described as follows: Q consists of all points that lie on lines that join a point of $\text{rad}(Q)$ with a point of $Q' = Q \cap U$.

\textbf{Pf (cont.):} (b) Assume that Q' is degenerate. Then there is a point P in Q' so that all lines of U through P are tangent lines. Any line through P and a point of $\text{rad}(Q)$ is also a tangent line. Since $<U, \text{rad}(Q)> = P$, every line through P not contained in U contains a point of $\text{rad}(Q)$, so all lines through P are tangent lines and P in $\text{rad}(Q)$, contradicting the choice of U.

(c) Any point of Q not in U or $\text{rad}(Q)$ is on a line joining a point of U with a point of $\text{rad}(Q)$. This line is a tangent contained in Q, so the point of U on it is in Q'.
Lemma 4.1.3

Remark: In view of this theorem, we can restrict ourselves to the study of nondegenerate quadratic sets.

Lemma 4.1.3: Let Q be a nondegenerate quadratic set of P. For any two distinct points P and R in Q, we have $Q_p \neq Q_R$. In other words, the quadratic set that is induced by Q in a tangent space Q_p has a radical that consists of just one point, namely P.

Pf: Suppose that for distinct points P and R we have $Q_p = Q_R = H$ a hyperplane. If Q' is the quadratic set induced by Q in H ($= Q \cap H$), then $\text{rad}(Q')$ contains at least the two points P and R. Since the radical is a subspace, all the points of the line PR are contained in $\text{rad}(Q')$.
Lemma 4.1.3

Lemma 4.1.3: Let Q be a nondegenerate quadratic set of \mathbb{P}. For any two distinct points P and R in Q, we have $Q_P \neq Q_R$. In other words, the quadratic set that is induced by Q in a tangent space Q_p has a radical that consists of just one point, namely P.

Pf (cont): Since Q is nondegenerate, each line through P which is not in H is not a tangent, so contains precisely one other point of Q. In particular, there is a point S of Q not in H. Consider the tangent space Q_S at S; since it is a hyperplane it intersects PR in some point T.

T is in $\text{rad}(Q')$ (since PR is in $\text{rad}(Q')$), so Q_T contains H. The line ST lies in Q_S, so, in particular each point of ST lies in Q. Thus, ST is a tangent line through T, and therefore in Q_T. So, Q_T contains H and the point S not in H, which implies that $Q_T = P$, and so Q is degenerate, a contradiction. \square
Nondegenerate Quadratics

Lemma 4.1.4: Let Q be a nondegenerate quadratic set of \mathbf{P}.

a. If P is a point of Q and W is a complement of P in Q_p, then $Q' := Q \cap W$ is a nondegenerate quadratic set of W.

b. If H is a hyperplane that is not a tangent hyperplane (tangent space) then $Q' := Q \cap H$ is a nondegenerate quadratic set of H.

\textit{Pf:} (a) By Lemma 4.1.3, $\text{rad}(Q \cap Q_p) = \{P\}$. Thus, by Theorem 4.1.2 (b), Q' is nondegenerate.

(b) Assume that there is a point X in $\text{rad}(Q')$. Then $Q'_X = H$. Since H is not a tangent hyperplane, we have $Q'_X \neq H$. This contradicts Lemma 4.1.1, which says that $Q'_X = Q_X \cap H$. \(\square\)
The Index of a Quadratic Set

Def: Given a quadratic set \(Q \), any subspace contained in \(Q \) is called a \(Q \)-subspace.

Let \(t-1 \) be the maximum dimension of a \(Q \)-subspace of a quadratic set \(Q \). Then the integer \(t \) is called the **index** of \(Q \). The \(Q \)-subspaces of dimension \(t-1 \) are also called **maximal** \(Q \)-subspaces.

The index is the algebraic (vector space) dimension of a maximal \(Q \)-subspace.

Examples: A cone and a hyperboloid in 3-dimensional Euclidean space have index 2 since they contain lines but no planes. The quadratic set consisting of the union of two planes in a projective space has index 3. Any quadratic set which does not contain a line has index 1.
The Index of a Quadratic Set

Lemma 4.2.1: Let Q be a nondegenerate quadratic set of index t in P. Then each point of Q is on a maximal Q-subspace. More precisely: if P is a point of Q outside a $(t-1)$-dimensional Q-subspace U, then there is a $(t-1)$-dimensional Q-subspace U' through P which intersects U in a $(t-2)$-dimensional subspace.

Remark: An important case of the above lemma is when $t = 2$: Through each point of Q not on a Q-line g, there passes a Q-line which intersects g.

Pf: The tangent hyperplane Q_p at P intersects U in a subspace V of dimension $t-2$. It follows that each line PX with $X \in V$ is a tangent and therefore contained in Q. Thus, $U' = \langle P, V \rangle$ is a $(t-1)$-dimensional Q-subspace. \qed
Lemma 4.2.2: Let Q be a quadratic set in P. Let S be a subset of Q with the property that the line through any two points of S is a Q-line. Then $\langle S \rangle$ is a Q-subspace.

\textit{Pf:} We can assume wlog that S is finite. Since any spanning set contains a finite basis, there is a finite subset S_0 such that $\langle S_0 \rangle = \langle S \rangle$. It is therefore sufficient to show that $\langle S_0 \rangle$ is a Q-subspace.

We now use induction on the size of S. For $|S| = 0, 1$ or 2 the assertion is trivial. So suppose $|S| > 2$ and assume that the assertion is true for each set with $|S|-1$ elements. Consider a point $P \in S$. By induction $V = \langle S \setminus \{P\} \rangle$ is a Q-subspace. We may assume $P \not\in V$. By hypothesis, for each point R in $S \setminus \{P\}$, the line RP is a Q-line. Since these lines generate the subspace $\langle S \setminus \{P\}, P \rangle = \langle S \rangle$, the tangent space of Q at the point P contains the subspace $\langle S \rangle = \langle V, P \rangle$. Therefore all lines XP with X in V are contained in Q. It follows that $\langle S \rangle = \langle V, P \rangle \subseteq Q$. □
The Index of a Quadratic Set

Theorem 4.2.3: Let Q be a quadratic set in a d-dimensional projective space P, and let U be a maximal Q-subspace. If Q is nondegenerate, then there is a maximal Q-subspace that is skew to (disjoint from) U.

Proof (Pf): Let t be the index of Q. We will prove the following more general result which implies this theorem: *If $j \in \{-1, 0, ..., t-2\}$ then there is a maximal Q-subspace U_j such that $\dim(U \cap U_j) = j$.*

We proceed by induction on j. If $j = t-2$ then the assertion follows from Lemma 4.2.1. So now suppose that $0 \leq j \leq t-2$, and let U' be a maximal Q-subspace with $\dim(U \cap U') = j$. We will construct a maximal Q-subspace U'' with $\dim(U \cap U'') = j-1$.

Observe that there exists a point P in Q such that $\langle U \cap U', P \rangle$ is not a Q-subspace. Otherwise, any point of $U \cap U'$ would be in $\text{rad}(Q)$ and since $\dim(U \cap U') \geq 0$ this contradicts Q being nondegenerate.
The Index of a Quadratic Set

Theorem 4.2.3: Let Q be a quadratic set in a d-dimensional projective space P, and let U be a maximal Q-subspace. If Q is nondegenerate, then there is a maximal Q-subspace that is skew to (disjoint from) U.

Pf(cont.): By Lemma 4.2.1 there is a maximal Q-subspace W of P through P intersecting U' in a subspace of dimension $t-2$. We claim that W satisfies the claim. Since $U \cap U'$ is not contained in W we have that $\dim(W \cap U \cap U') = j-1$. We will now show that $W \cap U = W \cap U \cap U'$.

Assume that there is a point X in $W \cap U$ with $X \notin U'$. Then the set $S = (W \cap U') \cup (U \cap U') \cup \{X\}$ satisfies the hypothesis of Lemma 4.2.2. Hence $M = \langle S \rangle$ is a Q-subspace. This subspace contains the hyperplane $W \cap U'$ of W and the point X in $W \setminus U'$, and hence the whole subspace W. Thus $M = W$. So we would have $U \cap U' \subseteq M = W$, contradicting the choice of P. \square
The Index of a Quadratic Set

Theorem 4.2.4: Let Q be a nondegenerate quadratic set of index t in a d-dimensional projective space P. If d is even then $t \leq d/2$; if d is odd then $t \leq (d+1)/2$.

Pf: By the preceding theorem there are two skew $(t-1)$-dimensional Q-subspaces U and U'. They satisfy

\[\dim(P) \geq \dim(U) + \dim(U') - \dim(U \cap U'), \]

so $d \geq 2(t-1) + 1$. \qed