The solution to the president's problem would be called a ** Secret Sharing Scheme**. The various combinations of people who could combine their information to get the secret is known as an

There are many ways to design perfect secret sharing schemes based on mathematical problems. The design depends on how complicated the access structure is. We will first look at one of the simplest access structures, where there are n people involved and any k of them can obtain the secret. Schemes with this access structure are called** k out of n schemes** (also known as (k,n)-threshold schemes).

Now, if k participants pool their information, the polynomial f(x) can be reconstructed (for instance, by using the Lagrange interpolation formula) and the constant term (i.e., the secret) can be obtained by evaluating the polynomial at 0. If less than k participants combine their information, then the polynomial is not uniquely determined, and its constant term could be any element of the field. This scheme is thus a perfect (k,n)-threshold scheme.

Let the secret be the coordinates of a fixed point on a given line in a plane (the line and the fact that the secret is a point on that line is public information). Let *l* be any other line which intersects the given line at the secret point. As shares, the distinct points of *l* can be given out. If you only know one of these points, then there is no way to determine the secret point, but if you know two of these points, then the line l is determined and its intersection with the given line will give the secret. Thus, this is a perfect (2,n)-threshold scheme for any n.

*Another example*. Let the secret be the coordinates of a point on a line in 3-space. Let *m* be a plane which intersects the line only at the secret point. Let *C* be any circle in *m*. As shares, distinct points on *C* can be given out. Any three points of *C* can be used to determine *m* and therefore the secret, but two or fewer points do not, and knowing them would not eliminate any possibilities for the secret point. This is therefore a perfect (3,n)-threshold scheme (for any n). The reason one uses a circle in this scheme, instead of just points on *m*, is that you want to make sure that any three shares will be able to determine *m*. If points of the plane had been used, then it would be possible that three shares could correspond to three points of *m* that were on a line, and then *m* would not be determined.

We will construct a scheme to solve the bank problem that we started this section with. Our geometric construction will use elements of a four-dimensional Euclidean space. The only geometric fact that you may not be familiar with is that in a four-dimensional space, two distinct planes can intersect in either a line, **a point** or not at all. The secret S will be a point on a fixed line (*l*) in a fixed plane in a 4-dimensional space. Let be another plane which intersects in a point P which does not lie on *l*. Let *m* be the line in determined by P and S. Finally, let *C* be a circle in .